\

VA\
/) \

/

e

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

a
\

/,

y i
=\
(

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

2

OF

3

A

OF

Downloaded from rsta.royalsocietypublishing.org

TRANSé(FZTIONS SOCIETY

PHILOSOPHICAL THE ROYAL

The Forces on a Solid Body in a Stream of Viscous Fluid
T. E. Garstang

Phil. Trans. R. Soc. Lond. A 1936 236, 25-75
doi: 10.1098/rsta.1936.0010

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand

corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1936 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;236/759/25&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/236/759/25.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

II—The Forces on a Solid Body in a Stream of Viscous Fluid

By T. E. Garstanc, M.Sc.
Assistant Lecturer in Applied Mathematics, University College of Wales, Aberystwyth

(Communicated by L. N. G. FiLon, F.R.S.—Received 26 February, Read 25 June, 1936)
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;t > 1—INTRODUCTION

2 : The object of the present investigation is to obtain formulae for the lift and drag
" 5 when a solid body of any shape is at rest in a stream of incompressible viscous fluid,
T O but no limitation is imposed upon the magnitude of the stream velocity. It is
=w convenient to start by giving a short account of previous work along the same

lines.

The forces on a cylinder of any shape in a stream of viscous fluid have been
discussed by FiLon.* Writing U for the velocity of the stream, and «, v, w for the
additional disturbance velocities, and neglecting terms of second order in the
disturbance, FiLoN obtains a system of linear equations identical with those adopted
by OseeN. These equations, however, are only assumed to be valid at a great
distance from the cylinder, and not at the surface of the solid, as in the applications
made by OseiN and other writers. The complete solution of the equations is ob-
tained in the form of two series of typical solutions, in which the corresponding
motion is respectively rotational and irrotational. The lift on the cylinder is found
to be given by the same expression as in the KurTa-Joukowski theorem for a perfect
fluid. Also the drag is found to be associated with a particular term in the solution,
which corresponds to an inward flow along the tail and a compensating outward
flow across a large contour.

The same equations and their solution were subsequently dealt with by Faxén.t
Fax£nN, however, assumes that the equations are valid at the surface of the cylinder,
and his results are therefore restricted to small values of the Reynolds number.
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— Also he does not obtain expressions for the lift and drag in terms of physically signi-
§ S ficant quantities.

OH The corresponding problem in three dimensions has been treated in two papers
e 2 by GoLbpsTEIN,T who follows FiLon in using the OSEEN approximation at a great
— y + wic g PP : g
= O distance from the solid. In his first paper GoLDSTEIN discusses two series of solutions
LT O
= w

* ¢ Proc. Roy. Soc.,” vol. 113, p. 7 (1926).
1 ¢ Nova Acta R. Soc. Sci., Upsala * (1927).
T “Proc. Roy. Soc.,” A, vol. 123, p. 216 (1929) ; vol. 131, p. 198 (1931).
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26 T. E. GARSTANG

of the equations. The first gives a series of particular integrals, in which irrotational
velocities are associated with certain values of the pressure. In the second series,
which is of the nature of a complementary function, the velocities are rotational,
while the pressure does not appear. FiLon’s theorem, connecting the drag with the
inflow in the tail, is shown to hold for the solutions discussed in this paper.

In the second paper, GOLDSTEIN investigates some more particular integrals. He
shows that for certain values of the pressure, the expressions giving the corresponding
irrotational velocities have singularities, and these singularities have to be cancelled
by the addition of suitable rotational velocities. The theorem concerning the drag
is found to be still true. Also, by a consideration of the orders of magnitude of the
various terms in the velocities, a simple expression, in the form of an integral, is
obtained for the lift.

Further progress with the evaluation of the lift cannot be made without a complete
investigation of the solutions of the original equations. Such an investigation is
also necessary to determine which solutions are associated with the drag and the
inflow in the tail. These problems are discussed in the present paper.

GoLpsTEIN* has also treated separately the special case of motion with axial
symmetry ; this case has also been discussed by DAgnL,T whose results agree with
GOLDSTEIN’S.

2—SuMMARY OF RESULTS

The discussion is based upon the system of linear equations used by GOLDSTEIN
and, for the two-dimensional problem, by FiLon. The complete solution of these
equations is obtained in §§3-7 of the present paper. The solution is divided into a
series of particular integrals, involving both the velocities and the pressure p, and a
complementary function, involving rotational velocities only. The pressure satisfies
LAPLACE’s equation, and in general it is possible to obtain a suitable particular
integral by associating each assumed typical value of p with certain irrotational
velocities. If, however, p is a sectorial harmonic, the expressions giving the corre-
sponding velocities have singularities, and these singularities have to be cancelled
by the addition of suitable rotational velocities. This part of the work is facilitated
by the introduction of a certain associated Legendre function, which does not appear
to have been studied before.

The complementary function is discussed completely for the first time, and is
expressed in the form of four series of typical solutions.

It is found that, at a great distance from the body, the vorticity is insensible
except in a certain region behind the body, which will be referred to as the wake.

The solutions of the equations are entirely independent except for the condition
of no total flow across a large surface in the fluid. This condition is found to lead

* ¢ Proc. Roy. Soc.,” A, vol. 123, p. 225 (1929).
+ ¢ Ark. Mat. Astr. Fys.,” vol. 21, No. 5 (1928).
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FORCES ON A SOLID BODY IN A STREAM 27

to a relation between the arbitrary constants associated with certain solutions
possessing axial symmetry. One of the irrotational solutions corresponds to a uni-
form outflow across a large surface, and this outflow is compensated by an inflow
in the tail arising from the rotational solutions which have axial symmetry.

The general solution of the equations of motion having been obtained, the contri-
butions of the various terms to the lift and drag are then examined in detail. The
drag is found to be associated with the irrotational solution which gives the uniform
outflow mentioned above. The value obtained for the drag is in accordance with
GoLDSTEIN’s result, and with the theorem obtained by FiLon for the two-dimensional
case.

The axis of x being taken to coincide with the direction of the stream, it is found
that the lifting forces in the directions of the y- and z-axes are each associated with
one of the special solutions which occur when p is a sectorial harmonic ; these
solutions will be referred to as S, and S, respectively. Now it is weli known that
in practice the lifting force on a body is always associated with a system of trailing
vortices in the fluid behind the body. We find that, for the solutions S, and S,
there are trailing vortices in the region at a great distance from the body for which
the present theoretical treatment is valid. Although in this region the vorticity
has become widely diffused, enough of its characteristics persist to give equal and
opposite circulations round two complementary halves of the wake, which die out
as 7t as we go away from the body, 7 denoting distance from an origin in the body.
Further, for any solutions other than S, and S, the corresponding circulations
tend to zero more rapidly than »~*. Thus the lifting forces are definitely connected
with the circulations round the diffused trailing vortices at infinity, and it is also
found that the relation between the signs of the lift and the circulations is that
required by observation.

GoLpsTEIN* shows in his second paper that the solutions S, and S, give lifting
forces, but it has not previously been shown that they are the only solutions which
do so. Also, the present paper gives the first correct identification of the three-
dimensional lift with a physically significant quantity.

The investigation is based upon the equations for steady motion, but the results
can be extended to motion which is periodic in character, ¢.e., steady on the average.
This aspect of the matter is not discussed, however, as it has been fully dealt with
by Firon,t for the two-dimensional case, and his treatment is equally applicable to
the three-dimensional problem.

When the work on the complementary function was nearly finished, I discovered
that the results of 84 had been obtained some years previously by Professor FiLon,
who, however, had not published them. Professor FiLon kindly allowed me to
check my work by comparison with his own, and the results were found to be in
complete agreement.

* < Proc. Roy. Soc.,” A, vol. 131, p. 198 (1931).
t ¢ Proc. Roy. Soc.,” A, vol. 113, p. 7 (1926).
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28 T. E. GARSTANG

3—THE ApPPROXIMATE EQUATIONS OoF MoTiOoN

We consider a stream of viscous fluid flowing past a fixed solid body of any shape,
the velocity of the undisturbed stream being U parallel to the x-axis. Let U 4 u,
v, w be the velocity resolutes at any point of the fluid, so that u, v, w are the divergences
from the uniform stream. We assume that, at a great distance from the solid,
terms of second order in the disturbance may be neglected. Then, if the motion
is supposed steady, the hydrodynamical equations assume the form

+lal’=vV2u
l_f’_vvz 3.1
+P}’ v }, ...... .. (30)
XL

where p is the pressure, p the density, and v the kinematic viscosity. We have also

the equation of continuity:

ou , dv | Jw
~—+=+—==0 . .... ... .. 2
ox oy + 0z 0 (3 )

Equations of this form were first used by OsEEN in his well-known solution for the
moving sphere. They have since been applied by other writers to a number of
problems in which they are supposed to hold at the surface of the solid, which means
that U must be supposed small. In the present paper we shall only assume that

the equations are valid at infinity, in which case there is no restriction on the value
of U.

It follows from (3.1) and (3.2) that
Vp=0.. .. .......... (33

We assume that both the pressure and the velocities of the disturbance tend to zero
in all directions at a great distance from the solid, and we may therefore suppose
p to be expanded in series of solid spherical harmonics of negative degree.

Consider now any typical value p, of the pressure. Suppose that u,, v,, w, are
values of the velocities which, together with p,, provide a solution of equations (3.1)
and (3.2). Now let

Uy, + Ug, V1 + Uy, Wy + Wy

be any other values of the velocities which satisfy the same equations. Then u,,
vy, wy must satisfy the equations

a.
(Vz _— 2k a‘_x"> uz, 02, wz - O, P S S S SRS S (3.4)

A\
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FORCES ON A SOLID BODY IN A STREAM 29

where
k=U/2v, .. ... ... .... (35
together with (3.2).

The values u,, v;, wy, and p, constitute a particular integral of equations (3.1)
and (3.2), while #,, v,, w, form a complementary function, which is the same for
all values of p. Thus the complete solution for the velocities is given by

U=t + Uy, ¥V =0y + Vg, W =w; + Wy,

provided that u,, v;, w, are now taken to mean the sum of the particular integrals
corresponding to the various values of p.

In general, it is possible to obtain a suitable particular integral by associating a
given typical value of p with certain irrotational velocities. If, however, p is a sectorial
harmonic, the expressions giving the corresponding velocities have singularities, and
these singularities have to be cancelled by the addition of suitable rotational velo-
cities which satisfy (3.4). When dealing with the complementary function, how-
ever, we must confine ourselves to values of u,, v,, w, which tend to zero in all
directions at a great distance from the solid, for there is here no possibility of cancelling
singularities. The complementary function can therefore be expressed entirely in
terms of well-known functions, but the special particular integrals just referred to
are found to involve a new type of associated Legendre function. For this reason
it is convenient to consider the complementary function first.

4—Tue CoOMPLEMENTARY FUNCTION

We proceed now to investigate the general solution of the system of equations
(3.4) and (3.2). The solutions of the related systems of equations

V2 (u, v, w) = 0,
ou , 0v ow _ .
and
(Ve + k) (u, o, w) = 0,
ou ov | Ow __
are to be found in various works on mathematical physics, e.g., Lamp’s < Hydro-

dynamics ”. A new method will, however, be adopted for the solution of the system
with which we are concerned.
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30 T. E. GARSTANG

It is convenient at this stage to introduce the following notation, 7, 0, » being
spherical polar coordinates with the axis of x as polar axis.

C,=r"®"P, (cos 0),
Cr=r®DPm (cos 0) cos ma,
D = r~ @™ P (cos 0) sin mo.

E, () = (2] Kua (k)

G, =F, (k) P, (cos 0),
G, =F, (kr) P,” (cos 0) cos ma,
H,» = F, (kr) P,” (cos 0) sin mo.

K,.; is the Bessel function of imaginary argument, defined as in WATsoN’s “ Bessel
Functions ” (§83.7, 3.71). P,” is the associated Legendre function, defined by
the equation

. denoting cos 6.

The functions C,, C,” and D,” are solid spherical harmonics. They do not appear
in the complementary function, which involves rotational velocities only, but they
will be required later when we discuss the particular integrals.

The functions G,, G,” and H,” are solutions of the equation

(V2 —F)V=0, ...........(401
while the functions é* G,, ¢#G," and ¢*H " satisfy the equation (3.4).

We are only concerned at present with those solutions of (3.4) which tend to
zero as r tends to infinity, remain finite for all values of 6, and have period 2= in .
The functions ¢#G,, ¢G,", and ¢*H," provide all the solutions satisfying these
conditions, if n takes all positive integral values, including zero, and m takes all
positive integral values such that m = n, this restriction being due to the fact that
P," (cos 0) vanishes if m > n.

The typical solutions for u,, v, w, are the functions ¢*G,, ¢*G,”, and ¢*H,”. Our
problem is to find combinations of these solutions such that (3.2) is satisfied.
With this object in view, we shall first obtain formulae expressing the partial deri-
vatives of the typical solutions with respect to x, », and z in terms of other typical
solutions. With the help of these formulae we shall then obtain four series of values
of u,, vy, w, which satisfy (3.2)[ Finally, we shall show that these four series include
all possible solutions of the system of equations (3.4) and (3.2).
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FORCES ON A SOLID BODY IN A STREAM 31

- On differentiating the functions G,, G,”, H,” with respect to #, y, and z, we meet
with the following expressions involving Legendre functions :

(), (1 — w8
m —_ 2 dan (‘L) .
wPm (w), (1 — u?) P

(1= PR, e (1= Deles

L ot

The most convenient method of procedure is to express all these as linear combina-
tions of Legendre functions.

For the first three expressions, we have the following well-known recurrence
formulae :

@4+ 1) P, = (4 1) Py 1Py o o e (4.10)
21+ 1) (1 — p2) ’21;" —n (D [Py —Pon]y o« e e e (4.11)

2n+ 1) P "=mn+1—m)P,,"+ (n+ m) P, . (4.20)

To deal with (1 — p?) éli";%ﬂ, we differentiate (4.11) m times, and multiply
by (1 — w?)*", which gives

@1 4+ 1) (1 — u) d;;'" — (214 1) muP 4 1 (n 4+ 1) [Poy” — P,,.17]

+ 20+ D)m(m—1) (1 — p2)t Pt . (4.21)

On differentiating m — 1 times the formula

_dPy _ dP,
(2n + 1) P, = » Jo> © e (4.22)
and multiplying by (1 — p2)!", we get
2n+1) (1 — p2)}P'=P, "—P_" ... .. (4.23)

. Making use of (4.20) and (4.23), (4.21) becomes

@n + 1) (1 — u?) % — ()t m P —n(nt+ 1 —m) P (4.24)
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32 T. E. GARSTANG

The expressions (1 — p2)* P, (¢) and p (1 — p2)? %E”—) are easily dealt with. From

(4.22) we have

2n+1) (1 — p2)*P, =P, =P % . . .. .. (4.30)
Also making use of (4.20), we have
21 4+ 1) w (1 — w2)? ‘% — P 4 (14 1) Pt ... (431)
Next, by changing m to m + 1 in (4.23), we have
(2n 4+ 1) (1 — p2)iP"=P, """ —P_"". . . ... (4.40)
We now turn to the expression (—Tl_)é%:_g? By direct differentiation of P,” (u),
we have
dpr 1 ,,, mu -
P (e Pt — p— Pm ... (4.41)

From (4.41) and (4.24), we have, making use also of (4.20),

2n+ 1)1 — )P =mnm+m (n+ 1+ m)P,_
—(n=m)(n+1—m) P, " . (442)

Eliminating P, ," from (4.42) and (4.23), and changing nto n — 1, we get
P m

(1__..__) =P_" 4+ (n+m(n+m—1)P_"" . . (443)
Also, eliminating P,,," and changing n to n + 1, we have
al"_), =P (nd+1—m) (n+2—m P . (4.44)
—

Finally, we have to consider the expression p (1 — p2)* Q{'H&)‘ From (4.24)

we have

(2n+1)”(1_p,)& _iizl___

=+ 1) (nm) 72

ap; —n(n+1—m) P
dp. (1 —p?)?

DN
Making use of (4.43) and (4.44), and afterwards of (4.20), we find that

2(2n4+1) u (1 — w) ‘”; (n —m) P & (n+m + 1) Pyt

—(ndm)(n+1—m{n+2—mP,,,""'+n+m—1)P_""} (4.50)

There is a number of special cases of these formulae, in which certain terms
disappear owing to the fact that n and m can only take positive values such that
m = n. "
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FORCES IN A SOLID BODY IN A STREAM 33

We also meet with the expressions E, /c(rkr) and F’, (kr), which it is convenient to

transform into linear combinations of the functions F,. With the help of the
well-known recurrence formulae

K, (1) = 5 [Kair (&) = Kot (2)],

and
K’ (2) = — 3 [Koi1 (2) + Koma (2)],
we easily find that
(20 + 1) U“’) oo (kr) —Fo (B)y o oo e (4.61)
and .
(204 1) F, (kr) = — [(n + 1) Faps (k) & nFoy (k)]. . . . (4.62)

The following special cases of these formulae may be noticed ; they depend upon
the fact that K_; (2) = K, (2) :

Fok(rkr —F (k) —Fo (kr), o o o e (4.63)

Fo(kr) = —Fy (kr). . . oo (4.64)

We see that the formulae for F, are of the same form as those for F,, except that
when n is zero, F,_; becomes F,.

With the help of the above formulae for the F,’s and the P,™s, we readily obtain
the following results :

oG, _

T + G+ (+ 1) Gl - (4.71)
ai(j;'m = Zn——f—kl [(ﬂ —l— m) G 1" + (72 + 1 — m) Gn—l—lm]a """" (4'72)
BH m 1 1H m

= + [ m) B (o L= m) Hl, (4.73)
agn . Zn—lfﬁ [Gol — Goill, o o o e e (4.74)
a; i (2n 3y (G = Gt = () (= 1) G

+ (1 —m) (n+2—m G, . (4.75)

oH,” k [H, " ° H,,,""' —(n +m) (n +m — 1) H,_"

dy 2(2n + 1)
+@m+1—m) (n+2—m)H,,"]. . (4.76)

VOL. CCXXXVI.—A F
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34 T. E. GARSTANG
°G,  k D
az_—zn_i_l[H"—‘l Hn+1]>--................(4.77)
8Gr  k

[H,_" — H, "+ (2 +m) (n+m — 1) H_»"
—(m+1—m) (n+2—m) H,"], . (478)

oz 2@2nt 1)

oH” &
iz 2@+ 1)

-G """+ Gy —(n+m) (nt+m—1)G, "
+m+1—m (n+2—m) G, ,"']. . (479)

A number of special cases of these formulae arises, which corresponds to the special
cases of the formulae for the P,”’s mentioned above.

We now come to the problem of determining combinations of the typical solutions
for u,, vy, w, which satisfy equation (3.2). It is easily seen from the differentiation
formulae (4.71) to (4.79) that we cannot achieve this by combinations of single
solutions. The results obtained by FiLon* for the corresponding problem in two
dimensions lead us to expect, however, that we can satisfy equation (3.2) with
values of u,, v,, w, which each contain two typical solutions.

It 1s clear that the solutions will fall into two classes, in one of which u, and v,
contain the functions G, and w, contains the functions H,", while in the other
class the position is reversed. We proceed to investigate the solutions of the first
class.

We see from equations (4.71) to (4.79) that if we take as a trial solution
Uy = 016*G," + o0, d*G, ", '
vy = 316G, - LG, T,
wy = 116"H,"™ 4 y,¢"H, "1,
then div. (u,, 05, w,) contains the eight functions
’ &G, &G, r=—1,0,1,2.

The assumed values of u,, v,, w, will give a solution provided that we can choose
the five ratios of the constants «,, a,, etc., so that the coeflicients of these eight func-
tions vanish. It is easily seen that we cannot choose values of u,, v,, w, such that
div. (u,, v, w,) contains fewer than eight functions.

Now an inspection of equations (4.75) and (4.79) shows that the coefficients of
&G, r = — 1,0, 1, 2, will vanish if, and only if]

Y1 = B, Yo = B

Equating to zero the coefficients of ¢#G,_,” and ¢*G,,,”, we then find that

ay = — (n -+ m -+ 1) By,
ay = (n 4+ 1 — m) B,.

* ¢ Proc. Roy. Soc.,” A, vol. 113, p. 7 (1926).
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FORCES IN A SOLID BODY IN A STREAM 35

Finally, we find that the coefficients of ¢*G,” and G, ;" will both vanish provided
that
Br + B = 0.

Thus, if we write
. — By =B =
we obtain the solution
uy =o,¢" [(n+m-+1)G"+ (n+ 1 —m) G,.."], I
vp = o,"¢" [— G, + G, 1", .. (4.81)
Wy = anmekx [_ H”m-}-l + Hn+1m+1]‘ L'

By giving different values to n and m, we get a series of typical solutions for u,,
vs, wy which satisfy equation (3.2) ; this series will be referred to as the solutions
of type I.

In a similar manner we obtain also a series of solutions given by

uZ - B”mekx [(}nm+l + Gn+1m+1]) l
02 - Gnmekx [(n + m + 1) Gnm - (n + 1 - m) Gn+1m]3
wy = B [— (n4+m+1)H"+ (n+ 1 —m)H,,"]. }

This series will be referred to as the solutions of type II.

As explained above, there is another class of solutions in which u, and v, contain
the functions H,” and w, contains the functions G,”. In this case, also, the solutions
fall into two series, which are given by

Uy = Ynmekx [(72 +m —I_ 1) Hnm + (n + 1— m) Hn+1m]7
v, =y, [— H,”" + H,.," ], .. (4.83)

k. - 1
wy = Y,"¢" [Gnm P Gn+1m+ ]3

L. (4.82)

and
u2 —_ Snmekx [Hnm-l—l + Hn+1m+l],

vy =38 [(n+m+1)H"— (n+1— m) H.."l, - .. (4.84)
wy, =38 [(n+m-+1)G"— (n+1—m)G,.,"].

These series will be referred to as the solution of types III and IV respectively.

There is a number of special cases of these solutions, which corresponds to the
special cases of the differentiation formulae (4.71) to (4.79).

Some of these special cases are of considerable importance. Thus, if in the solu-
tions of type I we put m = 0, we have

Uy = (n —I_ 1) anekx [Gn + Gn+l]>
Uy = ‘xnekx [_.__ Gnl + Gn+11]3
wy = a,e™ [— H,' + H,,].

F 2
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36 T. E. GARSTANG

These are the only rotational solutions which are symmetrical about the axis of
x. They have been used by Oseen* and GoLDSTEINT to discuss the flow of viscous
liquid past a fixed sphere. We shall find in §9 that they are also the solutions which
are associated with the drag in the general case.

If we put m = 0 in the solutions of type II, w, vanishes, and we have

u2 - Bnekx [Gnl + Gn+11])
vz = (n + 1) Bnekx [Gn - GnH]a
w2 == O.

Similarly, by putting m = 0 in the solutions of types III and IV, we obtain
solutions for which u, and v, vanish respectively. These solutions which involve
two velocities only have been used by the authorf to discuss the flow of viscous
liquid past a rotating sphere.

It remains to show that the systems of solutions which we have obtained include
all possible solutions. Considering those solutions in which u, and v, involve the
functions G,”, and w, the functions H,”, we may suppose in the first place that
Uy, Vs, Wy are given by the following series of typical solutions :

’ 0 n
u2 = aOGO + Z {anGn + % dannm})
n=1 m=1

vy = by + = .G, + = 076G,

8

n
wz = X X cannm)

n=1 m=1

where, however, the coefficients a,", b,", ¢,” are not independent, since u,, v,, w,
must satisfy (3.2). If we substitute these values of u,, v, w,, into the expression
div. (us, v5, w,), and equate to zero the coefficients of the functions G,”, for n = N,
we obtain } (N + 1) (N -+ 2) relations between

(N+2) (N+8) +3(N+1) (N+2) —1
coefficients, The latter number is made up of
LN +2) (N+38) — 1ams, } (N +2) (N + 3) bs,
LN 4 1) (N + 2) 6.

Thus, if we choose arbitrarily (N + 2) (N 4 3) — 1 of these coefficients, we can
theoretically find the remaining 3 (N 4+ 1) (N + 2), though we may not be able

and

* ¢ Hydrodynamik,” Akademische Verlagsgesellschaft, Leipzig, 1927.
t ¢ Proc. Roy. Soc.,” A, vol. 123, p. 225 (1929).
1 ¢ Proc. Roy. Soc.,” A, vol. 142, p. 491 (1933).
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FORCES ON A SOLID BODY IN A STREAM 37

to express the result in a manageable form using the coefficients a,”, 8,", ¢,". We
therefore try to replace these coeflicients by others so as to obtain a convenient
form.

Suitable new coefficients are suggested by the series of solutions obtained above.
In accordance with the equations (4.81) and (4.82), we write

a," = (n - m) %, 1"+ (ﬂ +m + 1) " =+ Bt - + Bnm_la
bnm = ocn—lm—:l - otnm_l - (n_' m) Bn-—lm —I_ (n —I— m + 1) Bnm’
6" =" — " A (n—m) B, — (n+m+ 1) B,

with suitable modifications for m = 0 and m = n, equation (3. 2) being then satisfied
identically.

It is easily shown that the (N 4 2) (N ++ 3) 4+ 3 (N 4+ 1) (N + 2) — 1 coefficients
mentioned above have been replaced by % (N + 2) (N 4 3) — 1 «,”s and {1 (N + 2)
(N + 3) 8,7, t.e., (N 4 2) (N + 3) — 1 coefficients in all. Thus our system of
solutions contains the greatest possible number of independent coefficients, i.e., the
system obtained is the most general possible.

In the same way we can show that the two systems of solutions, in which u, and
vy involve the functions H,” and w, the functions G,”, also include all possible
solutions of this form.

5—THE AssociaTED LEGENDRE Funcrion R,™ (i)

It has been seen in §3 that we may suppose the pressure p to be expanded in a
series of solid spherical harmonics of negative degree. We shall find that when p
is a sectorial harmonic, the corresponding values of v, and w, are most conveniently
expressed in terms of a type of associated Legendre function which does not seem
to have been studied before in the particular form which it is convenient to use here.
It therefore seems best to give a short account of this function before discussing the
particular integrals.

It is well known that the solution of LEGENDRE’s associated equation

(1 — p?) dv/dp? — 2pdy/dp + [n (n + 1) —m? (1 — )]0 =0, (51)
n and m being positive integers, and |p| = 1, is given by

v = AP/ (1) + BQ (i),

where
P (w) = (1 — w22 (@/dp™) P, (), . - . . . .. (5.11)

Qr (W) = (1 — ) @/dp™) Q, () .« « « . . . (5.12)
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38 T. E. GARSTANG

If m > n, P," (1) vanishes, and we are left with only one solution. The solution
for m > n has been given by HEINE* in the form
v == A (1 . “2)73 (dm*n——l/dp.m—n—l) {(“‘2 . 1)~(n+1)}
m 1
+ B (1 . “2)2 (dm——n—l/d“m—-n—l> {(“2 - 1)——(71~H)jA (“‘2 _ l)ndp.}
We shall now show how to obtain the solution for m > 7 in a form which is more
convenient for our present purpose, and which also fits in more naturally with the

solution for m = n.
We start with the well-known formula

Qn (f}') = %Pn (P-) lOg (1 + V‘/l - \u‘) - Wn—l)

where W,_, is a polynomial in p of degree n — 1.
It follows from this that if m > n — 1,

m

Q" (v) =3 (1 — p2)* {(@/dp") [P, () log (1 4 u)] — (7/du") [P, (¢) log (1 — w)]}.

We shall now show that if m > n, the expressions

(1 — w2)E (@dum) [P, () log (1 + u)]
each satisfy (5.1), and may thus be taken as the two independent solutions. If we
write
R, (#) = P, (#) log (1 — u),

and use the fact that P, (u) is a solution of LEGENDRE’s equation

(1 — u?) d*v/du® — 2pdy/dp. + n (n+ 1) v =0,
we find that R, (@) satisfies the equation

(1 — p?) d®v/dp? — 2pdy/dp +n (n+ 1) v = — 2(1 + p) dP,/dp — P,.

The right-hand side is a polynomial of degree n in p, so that differentiating m
times, we see that if m > n, (d"/du™) R, (@) satisfies the equation

(1 — p?) do/dp? — 2 (m + 1) pdw/dp + (0 —m) (n +m+ Hw=0. (5.2)

Now it is known ‘that if w is any solution of (5.2), then (1 — p,z)’%w satisfies
(5-1). Thus (1 — yﬂ)%l (d/du™) {P, (v) log (1 — @)} is a solution of (5.1) if

m

m > n, and similarly it can be shown that (1 — p2)? (@"/du™) {P, (1) log (1 + w)}

* ¢ Kugelfunctionen,’ p. 153.


http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A A

A \
I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

FORCES ON A SOLID BODY IN A STREAM 39

is also a solution. It may be noticed that these functions contain no logarithmic
term, since P, (¢) is a polynomial of degree =.

Also, whereas the function Q,” (1) becomes infinite when p = + 1, the new
solutions each become infinite for only one of these values of . In discussing the
particular integrals we shall only require the solution

(1 — u2)2 (ddu) {P, () log (1 — u)},

which will be denoted by R,” (x). This function is defined for all positive integral
values of m and n, but it is only of interest when m > n, since it is only then that
it constitutes a solution of equation (5.1).

Since P, (p) is a polynomial in p of degree =, it is clear that, if m > n,
(d@7/dum) {P, (1) log (1 — w)} can be expressed as a polynomial in (1 — p)7 2.
The form of this polynomial may be obtained as follows. Ifin (5.1) we make the
substitution

. . (1 - (“')_1 = A,
we obtain the equation
A2 (20 —1) d®y/dr® + 2 [(1 — m) 2% 4+ mA] dv/dh + (n —m) (n +m + 1) v = 0.
(5.3)

Assuming a solution in series of the form

we find the following relation between successive coefficients :
r+n—m(r—mn—m—1a=20r—1)(r—m—1)a,_,.
The indicial equation is
(p+n—m)(p—n—m—1)=0.

If we take p = m — n, then provided m > n, we obtain a solution of equation
(5.3) in the form

. mn 2(7721—71)71.,,%,”-‘1 22m—mn) (m—n—+1D)nn—1)_, .
”_A{k T T Mt 2120 (20— 1) A ++"‘}

= AN""F (m — n, — n, — 2n, 2}),

in the usual hypergeometric notation. The series terminates when we get to the
term in A", and is thus a polynomial in A containing n + 1 terms. This is the
required solution, and we see that if m > n, then

(d/d") (P, (1) log (1 — p)} = A (1 — w)~"9F [m — n, — n, — 20, 2/(1 — p)].
(5.4)
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40 T. E. GARSTANG

The value of A may be determined by finding the coefficient of (1 — p)~™™ in
(d@/dp™) {P, () log (1 — 1)}. In order to do this, we shall first find the coefficient
of (1 — w) tin (d/dp ™) {P, (») log (1 — p)}. We have

(@/dp"*") {P, (1) log (1 — p)}
— (L= @) "R, (@) — (1 1) (1 — 1) (1= p)™ (d/d) P, (1)
— 4+ Dnm—2)! (1 — p)~ "D (d2/dp?) P, (n)/2! ...
D) 2(1— ) (dd) P, (u)/n .

The coefficient of (1 — p)~" in this expression is equal to the sum of the coeffi-
cients of the highest powers of p in the successive numerators, taken with alternate
signs. Ifnis even, the first term is negative, while if z is odd the first term is positive.
With the help of Ropricur’s formula

P, (v) = (&/dp") (u* — 1)/2"nl,

we find that the coeflicient of (1 — p)~* is

(— 1)+ 2n (2n — 12)n... (n41) {1 1)+

n n Jn+1)n...2
e,y -yl

= — 2 (2 —1) ... (n+ 1)/2"

It follows that the coefficient of (1 — p)~™™ in

(d/dp") {P, (v) log (1 — w)} is
—(m—n—1!2n2n—1) ... (n+ 1)/2,

and this gives the value of A.
Finally, from (5.4) we have

R (u) = A (1 — w22 (1 —p)" @ F[m—n, —n, — 20,2/(1 — w)]. . (5.5)

It may be shown that, if m and n are positive integers such that m > n, the
expression on the right-hand side of (5.5) is equivalent, apart from a numerical
factor, to a generalized definition of P,” (), given by Hosson.* It is not, however,
convenient to use Homson’s formula, and we shall continue to use the symbol
R,” (w), in order to distinguish the functions which become infinite when p =1
from the functions P,” (u), which remain finite for all values of p such that
o] = 1.

* < Spherical and Ellipsoidal Harmonics,” p. 227.
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FORCES ON A SOLID BODY IN A STREAM 41

The formula (5.5) is convenient for calculating actual values of R,” (1). A list
of some of the early values is given below :

Rt (p) =— (1 — ) (1 — )™,

Ry (1) = — (1 — u?) (1 — )72

R (u) =—2(1 —p2)t (1 —p)73,

R (p) = — (1 —p?) [(1—w)t 4+ (1T —p)7%],

Ry (u) = — (1 — p2) [(1 — )2+ 2(1 — u)?],
R (p) = — (1 — ) [B3(1 — )t +3(1 — )2 +2(1 — )¢,
Ryt (p) = — (1 — p2)2[15 (1 — )2 + 15 (1 — p) =2 4 12(1 — p)~®

+6(1 —p)~].

6—SoruTtions oF DIrrerRENTIAL EQuaTions CoNrtaiNnINgG THE Factor R,” (cos 0)

We now introduce the following notation, which is a natural extension of that

used in §4.
C,m = =R ™ (cos 0) cos mo,

D, =y~ =D R, (cos 0) sin mow,
G," = F, (kr) R,” (cos 0) cos mo,
H," =F, (kr) R," (cos 0) sin mo.

These functions all become infinite when 6 = 0, since they contain the factor
R,” (cos 0), and bold type is used to distinguish them from the functions of §4,
which contain the factor P, (cos 0) or P,” (cos 0), and which therefore remain
finite for all values of 0.

The new functions are of no importance if m =< n, but if m > », C,™ and D,™ are
solid spherical harmonics, while G,™ and H,™ are solutions of equation (4.01), and
*G,™ and ¢ H,™ satisfy equation (3.4).

In order to discuss the particular integrals, it is necessary to obtain formulae
for the partial derivatives of the new functions with respect to x, y and z.

On differentiating the functions C,™, etc., we meet with the same series of expres-
sions involving the functions R,™ (p) as those involving P,™ (1) which were met
with in §4. As before, it is convenient to express these as linear combinations of
Legendre functions. We find that if m > n 41 (in some cases if m > n 4 2),
the R,™s satisfy the same recurrence formulae as the P,™s. We shall, however,
require a number of special cases in which m is equal to n or n 4 1, and it is found
here that both P,™s and R,™s appear in the recurrence formulae. It will not be

VOL. CCXXXVI.—A G
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42 T. E. GARSTANG

necessary to discuss these cases in detail, since they only involve the application of
the formulae for the P,”s obtained in §4.

Consider first the expression p R,™ ().  Multiplying (4.10) by log (1 — ) and
differentiating m times, we have

d"R R, i
e D u e @t R k) T Sl 60
From (4.22) and (4.11) we get
_dR,y;  dR.,  (2n+1) 4 dpP,
2 1) R, = — . . (6.02
(2n + 1) R, == 7o aprn LTy (6.02)

The last term on the right-hand side of (6.02) is a polynomial of degree 7, and so
if we differentiate m — 1 times, where m > n -+ 1, we have

dm—an N dmRrH—l - dmI{n“1
(2n 4+ 1) T Do (6.03)
Eliminating £~ R -
iminating I between (6.01) and (6.03), we get
2+ 1) pR*=mn+1—mR, "+ (n+mR,_" . . . (6.04)

If m =< n + 1, this result is modified. We require the following cases :

(214 1) uR2H = (20 £ )R, H Pt L (6.05)
(214 1) uRy = R,y + 2R,/ +2”i 11 f g Pt - (606

It will be noticed that this discussion fails altogether if n is zero, since equation
(6.02) does not apply. A separate treatment of this case will be given later.

To deal with (1 — ) (y.) === T/ we notice that (4.11) leads to the equation

dR

(2n +1) (1 — p?) o 2n+1) (1 + w)P,=n(n+ 1) (R.s — R,p).

On differentiating this m times, the term (1 + p) P, disappears if m > n 4 1.

The discussion then proceeds as for (1 — p.2)? (—ZB’%E—“_), making use of (6.03) instead

of (4.23). We find that if m > n + 1,

dR m

(2n+ 1) (1 — p?) —= T =m+1) (n+mR, " —nn+1—mR, " . (68.07)
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As before, the result is modified if m =< n + 1 ; we require the following cases :

dR,"!
d

@+ 1) (1— ) BT — (i 1) (24 )R, p1 — P, 2, . (6.08)

. dR, . o n(2n+1) 4,
(2n+ 1) (1 — u?) a’;[ =2n(n+1)R, " —nR, T P,
_mtntl) r:’j;f Up.» . (609
Next, by changing m to m + 1 in (6.03), we have
(2n+1)(1 —p2)PR"=R, """ — R, . . ... (6.10)
This formula holds provided m > n. We also have
(2n 4+ 1) (1 — p2)iR=R, " — R, — ;2-_{1_—1 P, . . . (6.11)
- n— n 2 1 n
(20 4+1) (1 — p2) R/ =R, — R, _,” ’;j; % n+ P . (812)
We now turn to the expression (—11—{—_'1_'”—% Proceeding exactly as for (11){(:2))%:
we find that, if m > n,
2mR,"
(I—T_—:;—ﬁ =R, + (n—1+m) (ntm) R . . . . (6.13)

and, if m > n 4 2,

2m R," m '
(1—’f_ ap =R (L —m) (et 2—m) Ry (614)
We also have
n+2
2(n< ]T}_——Z)“‘%r; = R;rl-ln+3 - Pn—l.-lnr}‘la L (615>
2 1 R n+1 ' 2y
(‘?——-——ﬁ_ )@)—'; =R, +P, ... ... [&16)

Finally, we have to consider the expression p(1 — u2) M As in the case

of u(1 — p2)t é%i)’ we have, if m > n -+ 2,

220+ Do (1— m)%f%_’" — (n—m) Ry 4 (4 1+ m) R,
—m4+mn+1—m{n+2—mR, "'+ m+m—1) R} . (6.17)

G 2
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44 T. E. GARSTANG
We also find that

2 2n+ 1) p(1 — un?) = — 2R, "4+ 2n+43)R,. "

+2n+ {2+ DR, 4+ P, ", . . . (6.18)

%dR"n-l-l _
dp.

AR T2
d

2(2n + 1) (1 — p?) — R, 20+ DR, — (2n+ DP,, 0. (6.19)

We now have to investigate the form taken by these equations when 7 is equal
to zero. 'The most convenient procedure is to make use of equation (5.5).  Putting
n equal to zero, this becomes

R, (1) — :ﬁ(@_—“ )1”2 R (6.20)

With the help of (6.20) we readily obtain the following results :
eRy" = mRy" — (m — 1) Rym, (m>1) . .. ... .. (8.21)
Tl L (6.22)
(1 — u2) ‘%f’" R AU (6.23)
(1 —p2) PR =R™ —R™L . .. ..o .. .. (8.30)

Equations (6.23) and (6.30) hold for all values of .

(Tzn—‘l‘l%? — R4 m— 1) mRy, (m> 1) . ... (6.31)
2R R n— 1) (m— QR (m>2) .. . . (6.32)

(I—w)t b
(_14_R—~):2)% —RF—PY, .. S (6.33)
(IZ_—R:;)_%:Roz_PO R (6.34)
SR P (6.35)

20 (1 — W) B — (4 1) Ry — Ry

Fmm— 1) {n— DR — m— R, (m>2) (6.36)
2 (1 — m)é%z —3RF — 2R 2R Pyl), . e (6.37)
2u (1 — w)%%{i ORI RE—Pr . .. (6.38)
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It will be noticed that the formulae for the R,™”s are of the same form as those for

the R,™s, except that when n is zero, R,_;" becomes R,".
was found to occur in the recurrence formulae for the F,’s obtained in §4.

The same peculiarity

With the help of these formulae for the R,™s, and also the formulae for the
P,”s and the F,’s obtained in §4, we obtain the following results, which are required

for the discussion of the particular integrals :

Cps _ _ 3
ox
acn——lm —
ox
aCn——l n
ox G
oD
0x
oD,_,
n [ D n
0x "2

_6_ M Gyl = — ke G11’

..........................

ox

%e"" Go— —k(n—1) &[G — Gy, (2> 1)

a kx n ___ n

2 G = 2+1[(r—!—n)G,_ —(@+1)G;
++1—nG, "], O<r<n—1)

kekx
2n — 1

0 n
5.?_c_ek:c Gn—l —_

9 H) = — kM H,,

ox

a_axekao" — —k(— )& H—H ], (2> 1)

0

2 X n_. ___ n __ H

S &H, 2+1[(r+n) = (2 1)
Ferl—nH,  (0<r<n—1)

0 kx n__ kex —_— n__ n n

o g [0 —1) (B —Hoo) + HL, (2> 1),

[(22 — 1) (Gps" — Gpi™)

+ G, (»>1).

(6.47)

(6.48)

(6.49)
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8@3,, = —C,. 1,
aG m 1 1 2 C — C m i1
O 1= m) 42— m) O — G, |
aDnm — 1 1 2 D m—1 D m+1
o ——7[(”4‘ —m) (n+ —m) D, "t — D,y .
36(2,, = —D,,.1,
aC"m m 1 mt1 \_
o t(n+1—m) (n+2—m)D + D, "],
a];z,,'" —m) Gyt 4 G, .
1
ﬁ%a_z%[cl—clﬂ, ................... y
a_CaST—L" — 1[G —C, (> 1) .
agol — g[gg —GP—Go+Gily o
2
330 _ .g [GE—GP—2Gy' — Gy T, o v o o o
agon = g [G0n+l _G1”+1 — n (n —_ l)Gon_l
+ (n—1) (n — 2)G,"7Y], (n>2) .
oG, 'k il et
ERACES [Gr— —G" = (r+n) r+n—1)G,,
+ (n —_— 1 — 1) (n —_— T — 2) Gr+ln—-1]7 .
0G,_" k

8y 9 (2?2 _ 3) [Gn—3ﬂ+1 _Gn~1"+1 . (zn - 2) (2?2 _ 3) G, "

— G, (>2) ..

8(;11»1'.l — k n+1
2 2@2n—1) [Gn-z

— G — (20— 1) (20— 2) Gu™

+G, (> 1)

oDt |
——la)jg" = - %‘Dlz, o e a .. e L
aDa}"’" — 1[D;! — D], (n>1 . .00

(6.51)

(6.52)

(6.65)

(6.66)
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9151701 — g [HZ —H2l, o o o oo (6.73)
algjo’ _ /5‘; [He —HP —2Hg —H'J, - . oo oo e (6.74)
+ (n—1) (n — 2)H," ], (n>2) . (8.75)

GH," . k ntl n+1 __ . n-—1

o 2 W et = ) (= D H
+m—r—1)(n—r—2)H,,""], . (6.76)

aHn——Zn k

- - ntl —_— J— n-1
3y 2(2n—3) 1 H, ., (2n —2) (2n— 3)H, 3
—H,_", (n>2) . (8.77)

°oH,_," — k [H”_2n+l _ Hnn+l _ (272 — 1) (2” — 2) Hn_zn_l

0 2(2n—1
4 ( n ) + Hnn—l], (n > l) . (678)

agj S 1 (6.81)
9Cais" _ _ 1rpat 4 Dot | 6.82
ol DD, (), (6.82)

1

a(;zo — g [He —HP2, - o o o oo e (6.83)

aa(i"z _ g [He — He + 2Hy' - Hy'l, . o oo oo (6.84)

agf‘ =y —H - D H (1) (- 2) B,

(n>2), . (6.85)

°G_ k

[Hr—ln—H - :E[qul“_H + (T + 72) (T + n— 1) I—Irml"m1
—n—r—1)(n—r—2)H, ', . (6.86)

0z 2@ +1)

8Gn—2n . k n+l . n+] . . s
2z 2(n- 3 [H,_s H, "+ (20 —3) (2n — 2)H,_;
+H,., (v>2), . (6.87)

aGa'Zln T2 (an 1) [H, ;"' —H"" + (20— 2) (2n — 1) H, "
—H,~Y,  (>1). . (6.88)

—1[C,+C2, . L .. (691)

2Dyt
0z
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aDa,.z_l" =3O G, (> 1), . (6.92)
oH,! |
o lzf [— G4+ G2 +GCodGly o o o o e (6.93)
2
3?; — 12“ [— G+ G —2Gg — Gyt], .« o o e (6.94)
- G G = (= 1) G (0 1) (1= 2) G,
k (n>2), . (6.95)
a n
I:Zr —2 (Zrk—l— 1) [—G "+ G " — (r ) (r+n—1) G,
—(n—r—1) (n—7r—2) G,,""], . (8.96)
aHn_zn . k

- it ntl —_ — n—1
e =g g [ G G = (21— 8) (20—2) G
=G, (n>2), . (6.97)

oHn " _ k [—
0z 2(2n—1)

Gn—— n+1 + Gn"‘H — (271 — 2) (27’1 —_ 1) (;'n~2"_l
+G, (m>1). . (6.98)

Equations (6.66), (6.76), (6.86), and (6.96) hold for all values of r and » such
that 0 <r <n — 2. v -

7—THuE PARTICULAR INTEGRALS

We are now in a position to investigate the particular integrals of the system
of equations (3.1) and (3.2). The method adopted combines certain features of
both the methods described by GorpsteIN ; the introduction of the function
R, (1), however, enables us to give a more systematic account of the matter than
is otherwise possible.

We remark firstly that a particular integral of equations (3.1) is given by

U, v, w; = —grad ¢, . . . . .. L. (7.11)
— Ul
p=poU PRI R (7.12)

The typical values for p are the functions G,, C,», D,”. If we start with any
typical value of p, a suitable particular integral is given by equations (7.11) and
(7.12), provided that the corresponding values of ¢ and its derivatives are finite
for all values of 6 and w.
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The next step is to determine the values of ¢ corresponding to the various possible
values of p.  As explained in GoLDSTEIN’s paper,* the value

b= — PU/ 7,
cannot occur, since the corresponding value
¢ = log (r — x)

leads to an infinite flow across a large surface in the fluid. To deal with the other
values of p, we make use of equations (6.41) to (6.45), which lead to the series of
corresponding values of ¢ and p given in Table I.

TasLe I
— plpU ¢
nC, Cpa1 >0 .. ...... (7.21)
(n — m) G G m<mn) .. ...... (7.22)
G Coct™ o o o e (7.23)
(n — m) D;» D,_1m m<m) ... ... .. (7.24)
D, Dat™ o oo (7.25)

We see that if p is a zonal or tesseral harmonic, i.e., m < n, ¢ and its derivatives
are finite for all values of 6 and o, and it follows that suitable expressions for u,
v1, wy, are given by (7.11). The actual values of u,, v;, w; in these cases can be
readily written down with the help of equations (6.41), (6.42), (6.44), (6.51),
and (6.52). These solutions of equations (3.1) and (3.2) will be referred to as
the irrotational solutions.

When p is a sectorial harmonic, ¢.e., m = n, the corresponding values of ¢, 9¢/9y,
and 04/9z become infinite when 6 = 0. In these cases we shall therefore express the
velocities giving the particular integral in the form

0
W= =Gt

0
Ulz—a—j‘f‘va‘f‘vu

0
wlz_*é%‘i“ws‘i“wu

where us, v;, w;, v;, and w, all satisfy (3.4). Further, u, etc., will be chosen so
that the expressions

0 0 0
— -é% + us, - a;é + v, - a—ﬁ + ws, vy, and wy,
* ¢ Proc. Roy. Soc.,’ A, vol. 131, p. 198 (1931).

VOL. CCXXXVI—A H
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all remain finite when 6 = 0, while

ou 0 (v3 4 v) 0 (ws + wy)
—8;3 + % -+ 38z =0, ... .. . (7.30)

In this way a particular integral satisfying all the necessary conditions is obtained.
These solutions of equations (3.1) and (8.2) will be referred to as the special
solutions. ,

We shall now show how to determine the values of u, etc., corresponding to the
values of p and ¢ given by (7.23).  First, we proceed to find a function y, satisfying
(4.01) and such that C,_," + ¢*y, remains finite for 6 = 0. Now C,_," is of the
form f(r, 0) cos nw, and, therefore, apart from the possible addition of a function
which remains finite for 6 = 0, ¢y, must be of the form g (r, 0) cos no, i.c., y, must
be of the formnil1 A'G,"

r=0

1 1s easily determined, for we have

1 —
Cyt = e LR .. (7.31)
o T e—k(r—x) y 2
eGo—- kr r_—‘x. e e e e e e e (73)
Thus the function Cy' — £¢*G,' remains finite for all values of 0, i.e., vy, = — kGy'.

The other functions y, may be determined as follows.
By hypothesis
C,._" + ¥y, is finite for 6 = 0.
Hence also

-% (Coy -+ ¢,) is finite for 0 = 0.

But from (6.61) and (6.62)‘we have

0 . . . .
— C," = — $C,"™" 4 an expression which is finite for 6 = 0.

a9y

It follows that

%—” = — %11 + an expression which is finite for 6 = 0.

— — 1 ¥ A" G, L an expression which is finite for 6 =0. . (7.33)
r=0

With the help of equations (6.65) to (6.68), 9y,/2y can be expressed in terms of
the functions G,"", 7 =0, 1,2, ... n, and G,” ', 7 =0, 1,2, ... n — 2, which all become
infinite when 6 = 0, and the functions G,_,""* and G,*~*, which remain finite for 6 = 0.

n
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Substituting this value of 9y,/9y into (7-33), and equating coefficients of G,*™', we
obtain, if n > 2, the following equations connecting the coefficients A,":

[nn Af
nt+l n 1
At = —k(Ar + 3> ...... I (7.41)
ntl . A1‘+1n _ Ar—ln > —
A= k(e — Al (1 =r=a-y L 042)
A, o= B A BALD (7.43)

n 1 —272'—3,

Also, it follows from (7.33) that 9y,/9y can contain no terms with the factor
cos (n — 1) o which become infinite when 0 = 0, and, therefore, the coeflicients of
G, ' must vanish. This gives us the additional equations

(1 —3{— n) Ar=(1—nA" . . . . .. (7.44)

(r+14n) (r+ n) o (r+1—n)(r—n) n — s '
% T3 A, = 5] A, (1=r=n—2). (745

Using (7.44) and (7.45), we find that

Ar= (=1 @+

Also, from (7.41) and (7.44) we get

— 2k
nt+l
A T+ 1

and using equations (6.63) and (6.64), we find that this formula is true for n = 1

and n = 2, whence .
Aon — (_ l)n—l (%—Aol.

Ay, (0> 2),

We have already shown that A,' = — £, so that
. . 2n—1 kn
ar=(—nyZE,
and
Ar—(—1ybgmip Z LD @=DL (7.51)

mn+n!n—r—1)!

The work may be checked by verifying that the expression found for A" satisfies
(7.42) and (7.43).
Finally we have

e (2D (=1 .,
= B (= 2Tk e G (752)

H 2
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Now it is clear that if ¢, satisfies (4.01) and is of the form
1. + an expression which is finite for 6 = 0,

the expression C,_," -+ ¢~ ¢, and its partial derivatives with respect to x, », and 2
remain finite for 6 = 0. We shall take

%=~2%§ e (7.53)

= ¥, + an expression which is finite for 0 = 0,

and further, we now write
Usy Vg w3 = — grad &¢,. . . . Lo L L. . (7.54)

We choose these values of u;, v3, w,, rather than
k.
Us, U3, Wy = — grad ¢y,

for convenience in determining the expressions v,, w, which have to be associated
with u;, v;, w, in order to obtain possible fluid velocities.

Now since %’;‘- and% (Cosi™ + ¢*y,) remain finite for 6 =0, it follows

thatai (¢*y,) is finite for 0 = 0. It is easily seen that suitable values of », and
x

w, are given by

by = — 4k—:—x ()i =0. . . . . . . .. (155)
For v, is finite for 6 = 0, and further
ou 0 0 01 O ey LI
'_873 "I_ ?}’ (2'13 + 1)4) + 5% (w?) —l_ w4) - 2k ox (ek q)") 4k axay (e X"-l)
=0 '

so that (7.30) is satisfied.
With the help of equations (6.46) and (6.47) we find that

— = Dl gpeageg, po 7.56
2)4 o (Zn — 3)! (4 n—1 . .' ...... ( . )
It follows that when p = — pUG), a suitable particular integral of equations (3.1)
and (3.2) is given by
" 0
"y — — a_%x—_l 1 ) (7.61)
n a —'2 ! n L.n X n—
by — — aC;y_l — 2 () — (”%T@)F PEIEG, L. (7.62)
= — acanz—l — a%(e""npn). .............. (7.63)
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Making use of (7.53) and (7.43), we find that

n—1

b= A’G," - A, G, % — A, G, % . . . . (7.64)

r=0

the value of A" being given by (7:51). The actual values of u;, v;, w; can be
written down with the help of equations (6.43), (6.46), (6.47), (6.62) to (6.68),
and (6.82) to (6.88).

The case in which p and ¢ are given by (7.25) may be dealt with in the same way.
The equations (6.48), (6.49), and (6.71) to (6.78) correspond exactly to (6.46),
(6.47), and (6.61) to (6.68), except that there are no terms in (6.71) and (6.73)
which remain finite for 6 = 0. It follows that if

n—1
4)’:: = EoArnHrn + An—2n I-In-—zn_2 - An——ln Hn—ln_za L (765)

the expression D, " + ¢*¢’, and its partial derivatives with respect to x, y, and
2 remain finite for all values of 6. Writing

4 Ug, Vg, w3 = — grad ¢’ . . L. L L L L. (7.66)
an
— !

we obtain a suitable particular integral of equations (3.1) and (3.2) in the form

oD,_," 0 pers
wpm— TR ), L (7.67)
— aDn~l . a %07 . (n __2)!_ n fn-+1 kx n—1
v, = o (07 o PRI, L (7.68)
—_ _a.D_"—_l': — 0 2
p= T V) (7.69)

The above discussion fails if » =1, since the function y, , is only defined for
values of > 1. This case is of considerable importance, as it is the solution asso-
ciated with the lift, and we shall therefore discuss it in detail. We have to find
the velocities corresponding to the values

p - pUCll, ?S - COI-

Now we already know that the expression Cy! — k¢**G,! remains finite for 6 = 0,
and we therefore write, in this case

Ug, v, wy = grad ke Go'.
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Also we have
0
kek" Gol = —5.% 3

where
—kA

[ 5o

It follows that suitable values of v, and w, are given by

Uy = — Zk g—i} = — 2k26ka0, wy = 0.

For v, is finite for 6 = 0, and further

uy | 0 2 P
P - % (vs + vy) + 5 (ws + wy) = 2k 570 2k ayax—-O.

The complete solution, when written out in full with the help of equations (6.43),
(6.46), (6.61), (6.63), (6.81), and (6.83), is found to be

= — % (Cot — ke Gol) o o o o (7.71)
O B G, e e (7.72)
by = — ;} (Cot — ke Get) — 282 Gy o o o o e e (7.73)
—1[C, —CP] + ’i;. #[Ge — G2 — 3Gy +Gy], . . . . (774)
w0, = — a% (Cot — kGal) « o o o (7.75)
1D+ ’;_2 STHZ —HE o o e (7.76)

The case in which p and ¢ are given by
p=— PUD11> ¢ = Dy'.
may be dealt with in a similar manner. We now write

Us, Vg, Wy = grad ke Hy',

Uy = 0, Wy = — Zkzeka’o.
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The complete solution in this case is given by

m:-%m¢4Mﬂ)..”..... ..... . (7.81)
S Dy BEHGL, L (7.82)
mz»—%HM—%WHﬂ . (783
=%Dﬁ+§fﬂﬂﬁ~Hﬂ,.j...... L. (184
wﬁ:—éamijH@—amw& . .. (7.85)
=~%m,+qq+§¢q—G:+Gﬁ~ﬂ%+Gd .. (7.86)

The solutions given by equations (7.71) to (7.76) and (7.81) to (7.86) have been
discussed, in terms of different notations, by Oseen* and GOLDSTEIN.}

It is to be noticed that since the functions ¢, &', #*Gg and #*Hg' are
all single-valued, the expressions u;, v5, w; are in all cases the gradient of a single-
valued function. This fact is of importance with reference to the calculation of
the lift in section 10.

8—Tue ConprtioNn FOrR No TorarL Frow

The solutions of equations (3.1) and (3.2) obtained in §§ 4 and 7 are entirely
independent, except for one condition, namely, that there can be no total flow
across any large surface in the fluid. Consider now a large sphere X, which is
everywhere at a great distance from the solid S, and whose radius r is ultimately
made infinite. Then the condition for no total flow is

mﬂwa+@+memﬁ=o......@m

r—> 00

where [, m’, n’ are direction cosines of the outward-drawn normal to X. Since
H I'UdX vanishes identically, (8.11) may be replaced by
JE
ﬁmﬂam+mewmz:0.. ...... (8.12)
3

r—>00 v
This condition implies a relation between some of the arbitrary constants associated

with the various solutions of equations (3.1) and (8.2). In order to obtain this

* ¢ Hydrodynamik,” Akademische Verlagsgesellschaft, Leipzig, 1927, pp. 31-33.
1 ¢ Proc. Roy. Soc.,” A, vol. 131, p. 198 (1931).


http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

yA \

A B

%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

56 T. E. GARSTANG

relation, it is necessary to find the contributions of the different solutions to the
integral

H ('u+m'v - n'w)ds =F,say. . . . .. .... (813)
b3

Now all the terms in %, v, and w, which satisty equation (8.4), contain the factor
e~ or ¢ and are thus exponentially small when r is large, except in the
region for which 0 is of order less than (k7)~*. 'This region, which is on the down-
stream side of the body, will be referred to as the wake.

It is convenient to investigate the behaviour as r tends to infinity of certain integrals,
taken over the sphere X, in which this exponential factor occurs. Consider first
the integral

L= || e f(ny,2 85,
where

reolt)

We may omit that part of the range of integration for which the integrand
is exponentially small, .., all points for which
0> e = (kr)7t09, 5> 0.
Thus I, may be replaced by the integral
21 e .
I', = 72J dmj e f(x, 9, 2) sin 0 0.
0 0

Now we have
, 1( .
[T'y] < Ar? - r—zjosm 0 d6

< Ac?,
where A is a numerical constant.
It follows that,
imI, =0 . .. .. ... .. ..(821)

The same result is evidently true if we omit the exponential factor in the integrand
and take the integral over the wake only.
Proceeding in the same way, we obtain the following results :

lim ﬁze"‘("x)f(x,y‘, 2) (1 —cos0)d= =0 . . . . .. . (822

provided e .
7=0(3)
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lim JL N F 9, 2) (1 —cos 0)2dS —0 . . . . . . (8.23)

provided f=0(1).
lim j L N F 9, ) sin0dS =0 . ... ... (8.24)

provided f': 0 <%) .
lim j :2 N f a9, 2) sind0dS =0 ... ... (8.25)

provided f=0 ().
lim j:ze—w—ﬂ Fl#,9,2) (1 —cos 0)sin 6dS =0 . . . . (8.26)

provided f=0().
lim J:ze"‘("")f(x,y, 2) (1 —cos 0) sin30ds —0 . . . . (827)

provided S=0().

- In each case the result is still true if we omit the exponential factor and take the
integral over the wake only.

Consider now the contribution to F of the velocities u,, v,, w, of the comple-
mentary function.
v, and w, are of the form

e f (%, 0, 2),
r=ofh).

lim ” (mvy + n'wy) dZ =0. . . . . . . .. (8.31)
3

r—>00

where

It follows from (8.24) that

We now have to evaluate U l'u, d=. It is only necessary to consider solutions
3

such that u, is independent of w, since in all other cases the integral with respect
to o vanishes. The only solutions of this form are those of type I for which

Uy = (n + o, e® [G, + G, 4]
Now it has been shown that*
lim ([ e0Gax =22 (8.32)
b3

7 —>00 kz )
* GARSTANG, ¢ Proc. Roy. Soc.,” A, vol. 142, p. 502 (1933).

VOL. CCXXXVI.—A I
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It follows that
lim ” Vuy dS — %‘ St Dow o oo (8.33)
r—>00 b3 n=0

Next consider the contribution to F of the irrotational solutions.

" =oft)

then (uh U1, wl) =0 <7:1§> s

and it is clear that

lim H 'ty + m'v, + n'wy) dS = 0.
b3

r—>00

It follows that the only solution which contributes to F is that corresponding to the
value

¢=a000:%9.

In this case we have
U (luy + m'oy + n'w,) d5 — — H 0 45 = dnay. . . . (84)
s Js or

It is now necessary to consider at some length the contribution of the special solutions
to F. This part of the work is complicated by the fact that the functions R,” (cos 6)
become infinite when 6 = 0.

Consider first the contribution of these solutions to H I'u, d=. Corresponding to
3

the value
d=0Cn.y", . ... (8.50)
we have, making use of (6.43),
i O
n=— e
= G + us.

The integral of the harmonic term always vanishes, since the integral with respect
to o is zero. It also vanishes by reason of its order of magnitude if n > 1.
Now from equations (7.61), (7.53), (7.55), and (7.56) we have, if n > 1,

_— 82 kx

Uy =2 0xdy 1)
— 90z M= 2! pupg
= 2 a’v 2 (212 _ 3) ! (4 n—1 ]‘
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FORCES ON A SOLID BODY IN A STREAM 59

To deal with this expression we make use of certain special cases of equation
(4.75), viz.

n—1
aGg’:=m%ﬁ4)Fiﬁ—%%~ﬂﬂ%—ﬁﬂhﬁ”+zﬁr% (n>2) (851)

1
ag}==§f~(h“—2Gw+2Gﬂ ................... (8.52)

Also, if n = 1, we have from (7.72),
u3 - k2gka11. .......... (8.53)

Equations (8.51), (8.52), and (8.53) show that, in evaluating H l'ugdZ, the
3

1
integral with respect to o vanishes in all cases except for the terms in a(ai)l‘ , which

are independent of w, and the contributions of these terms cancel owing to the
relation (8.32).

In the same way we can show that the contributions to H l'uyd% of the solutions
3

corresponding to the value
¢ = Dn-—ln

also vanish in the limit, and we have therefore .

gﬂ“%a:a e (8.54)

2

We now turn to the contribution of the special solutions to
q m'v, d=.
JJz

Consider first the solution corresponding to the value
7S - Cola

v; being given by (7.73) and (7.74).

The expression ¢ G,, being a continuous solution of (3.4), is one of the terms
which appear in v,, and it follows from (8.31) that the integral of this term vanishes
in the limit. ;

With regard to the other terms, we see from (7.74) that the integral over the part
of X outside the wake certainly vanishes, since the integral with respect to o is zero.

I2
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60 T. E. GARSTANG

Thus we have only to consider the behaviour within the wake of the terms which
become infinite for 6 = 0. Using equation (7.73), and writing for shortness

we find Fr=n=%
0 — 2
_33, (Co* — ke Ggl) = fr .y [— 2' % + ...]
4 ky* _l_[_~ 3 _ 48 + ...]

2r2 41 5!
= fi (x,y, z) -+ sin%6 f, + sin%6 (1 — cos 0) f,
1
where f, = O(;),fl =0 (1), /; =0 ().
Thus, making use of equations (8.24), (8.25), and (8.27), we see that
fim || o a2 =0

Considering next the solution corresponding to the value

¢ = Clza
we have, from (7.62),
oCZ o

UV = — a)) — -éj) (8’”4}2) — 4k3et Gll.

With the help of the differentiation formulae given in §§4 and 6, we find

2 .
2 53—2 (Co' — k*Gy)) + g1 (4,9, 2) + g1 (%, 9,2), - - . (86)

where g; is a continuous harmonic function of order = and g, is a continuous solution
7

of (3.4). It is only necessary to consider the first term on the right-hand side of

(8.6). The integral of this term over the part of = outside the wake vanishes in
1

2 2 .
the limit, since 2 8_y20 is a harmonic function of order }3 and 5% (e#Go') is exponen-

tially small.  Within the wake, more careful investigation is required, and we find

82 X 1 2 - a 2
—a-‘y—z‘(C()l_kekGo):k[_l_l_%_%_’+”J <7’ ))—>

g\
3k%y (r2 — ) [ 22, 3&2 ]
'—l—' ———F—' 2| ““" cee
3.2 4.352
73[_?7! 4 5 + ]

=/1 (%, 2) +sin 0 f; (9, 2) + sin*0 f; (x,, ),

A=0(z)  A=0(}) f=oq)

where
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FORCES ON A SOLID BODY IN A STREAM 61
It now follows from equations (8.21), (8.24), and (8.25) that

lim J‘j m'v; dZ = 0.
7—>00 3

It is easily seen that the value of v; corresponding to the value C,_," of ¢ can be
expressed in the form

an
v, = A '@; (Col - kekaol) + & (%)’a Z) + & (x,)’, z):

where A is a numerical constant, and g; and g, are of the same form as the functions
& and g, in equation (8.6). Also, further differentiation of Cy' — ke G,' with
respect to y bringsin an extra factor 1/7 in some terms, and an extra factor sin 6 in
the others, either of which has the effect of making the corresponding integrals
tend to zero more rapidly.

Thus all the contributions to H m'v, dZ of the series of special solutions given by
3

(7.23) vanish, and, similarly, the contributions of the series of special solutions given
by (7.25) also vanish.
In the same way we can show that the special solutions contribute nothing to

“2 n'w, d=.

Thus it appears that the special solutions give no total flow over £ in the limit.
Collecting our results, it follows from (8.12), (8.33), and (8.4) that

b= —2 S (4 Dap . oo .. . (87)

Now the coeflicients a4, and «, are associated with solutions of equations (3.1)
and (3.2) which possess axial symmetry. It follows that equation (8.7) is exactly
the same, allowing for differences in notation, as the equations given by GoLp-
sTEIN* and DanL, although these authors, in the papers referred to, confine them-
selves to the case of axial symmetry.

The expression 4ra, represents a flow uniformly distributed over X, this flow
being outwards if 4, is positive. On the other hand, since the integrand on the

left-hand side of (8.32) is exponentially small except in the wake, the expression

%72—: g(n + 1) @, represents a flow which is confined to the wake and which is
n=0

[ce]
inwards if £ (7 + 1) «, is negative. We shall find later when discussing the drag
n=0
that this latter condition is always satisfied, and therefore 4ra, represents an outward
flow. Anticipating this result and denoting the outward flow over X by E, we have
‘ 47 &
E == 471:610 _ — -/?- Z (n —|"‘ 1) 29 e e e e e e e (8.8)
n=0
* ¢ Proc. Roy. Soc.,” A, vol. 123, p. 232, equation (54) (1929).
1 ¢ Ark. Mat. Astr. Fys.,” vol. 21, No. 5, p. 19, equation (29) (1928).
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62 T. E. GARSTANG

9—Tue Drac

Let (X, Y, Z) denote the forces exerted by the fluid on the solid, and (X', Y’, Z’)
the forces exerted by the fluid outside = on the fluid inside.

The rate of transfer of momentum across X, parallel to the axis of #, is readily
shown to be

Hzp (U+uw){' (U-+u +mv+nwds =M, say. . . (9.11)

This must be equal to the total external force applied to the fluid, in the same
direction, across the boundaries S and X, whence we obtain, as the equation giving
the drag,

~

X — X = JLP (U+u) ' (U+u) +mo+4nwpds. . . . (9.12)
Now X' is given by

X = Hz(l'iic+ m'ey + o Q) ds

N N P OU g (%0 ) (uy Ow
—.Uz{ l*”+""[2l ox T <8x+ 5 >+” <az+ 8x>]}d2'
If (¢, 0, ) is the vorticity, then
c_dw_ e, %
w2 "z T 3y’
and we have ~

X' = .”z {—Up—ov(mq —n)}ds + Zov JL <l' % + m' g—;}; + n' %i—f—> di. |

It has been shown by GoLrpsTEIN that the last integral vanishes identically,*
and that the integrals of the terms in v and ¢ vanish in the limit.{ We thus have

Xi=— [epas o 9.2)
Again, ;
M, = ijz'Uz ds + ijU (2% + m'o + n'w) dS
| + .”: ou (l'u+m'v+n'w)ds. . . (9.31)

The first integral vanishes identically. Hence, making use of (8-12), we have

M, = oU ”2 luds 4o | j w(l'u + mo + w'w)ds. . . . . (9.32)

* ¢ Proc. Roy. Soc.,” A, vol. 123, p. 221 (1929).
+ Ibid., vol. 181, p. 205 (1931).
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FORCES ON A SOLID BODY IN A STREAM 63

GorpsTEIN* has given in his first paper a proof that the last integral in (9.32)
tends to zero. The proof only applies, however, to the incomplete solution of the
equations given in that paper. In order to obtain a general proof, we make use

of the discussion of the integral H (l'u + m'v + n'w) d= givenin §8. It was found
3

that most of the terms in this integral vanished in the limit on account of their
order of magnitude. In all these cases, multiplication of the integrand by u will
cause the integral to tend to zero still more rapidly. Further, in those cases which
formerly depended on the fact that the integral with respect to « vanished, and
those which actually led to a finite result, it is easily seen, with the help of equations
(8.21) to (8.27), that multiplication by u will cause the integral to vanish on account
of its order of magnitude. Thus we have

lim H u(l'u + m'v + n'w)ds =0,
7 —>00 3
whence

M, = U L ludS. ... (9.33)

We now have from (9.12), (9.2), and (9.33),

X = — jLz' (p -+ oUu) d3.

But
p=5U %%,
and
U= — 5% + ug + uy,
from which we obtain
X — —oU ”z Uty +ug) dS. o oo (9.41)

Making use of (8.33) and (8.54), we have

_AmeU S e (9.42)
0

X = k.

[ee)
From physical considerations X must be positive, and therefore % (7 + 1) «, must
n=0

be negative, which is the result that was assumed in §8. We have from (9.42) and
(8.8)
\ >

X =4npUaqy . . . . . . . . ... (9.5)

— pUE. o o e (9.6)

* ¢ Proc. Roy. Soc.,” A, vol. 123, p. 216 (1929).
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64 T. E. GARSTANG

The value of the drag depends only on those solutions of (3.1) and (3.2) which
possess axial symmetry. For this reason, as with the condition for no total flow,
equation (9.5) agrees with the equations given by GoLDsTEIN* and DAHL. DAHL’s
results are, in the first instance, only valid for small values of the Reynolds number,
since he calculates the drag by means of integrals over the solid ; they can, however,
be readily extended to the general case by using integrals at infinity instead, since
the discussion relates to flow past a fixed body.}

Equation (9.6) has also been given by GoLDsTEIN§ for unrestricted three-dimen-
sional flow. The same equation was obtained by FirLon|| for two-dimensional
flow.

10—TuE LiFr

We now turn to the calculation of the lift on the body in the direction of the axis
of y. The rate of transfer of momentum across X, parallel to this axis, is given by

M, = Hz o {I' (U + u) + m'v 4 n'w} d=.

The equation for the lift is
Y —-Y=M, . ..... ... .. (101)

Now Y is given by

Y = [L (Uxy + m'y + n'9z) d=

o

=l%%%+%+WF%”w$+WN%+%NE
zzﬁzp_mw-}pvwc__w@]ﬁ:+§L2w<r%$+_ w ,mﬁdz

As for the drag, the last integral vanishes identically, and the integrals of the
terms in £ and ¢ vanish in the limit. We thus have

v = [ mpas.

:-dJJ ¢dz N (1)

Also
M, = “E oUl'vd=E + HE ev(l'u + m'v 4+ n'w)d=

* ¢ Proc. Roy. Soc.,” A, vol. 123, p. 227, equation (20) (1929).

t ¢ Ark. Mat. Astro. Fys.,” vol. 21, No. 5, p. 19, equation (30) (1928).
t Garstang, ¢ Proc. Roy. Soc.,” A, vol. 142, p. 491 (1933), §7.

§ ¢ Proc. Roy. Soc.,” A, vol. 131, p. 198 (1931).

|| Zbid., vol. 113, p. 7 (1926).
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FORCES ON A SOLID BODY IN A STREAM 65

As for the drag, the last integral vanishes in the limit, and we have
M, = oU H PodS. ... (10.3)
3

Thus from (10.1), (10.2), and (10.8), we obtain
Yz_pUj[z'( ¢+v3+v4+v2>+m’a¢] .. (1041
3

Now since all the terms in u; are solutions of (3.4), which remain finite for 6 = 0,
it follows from (8.24) that /

lim HE m'uy d = 0.

—>00

Thus (10.41) may be written
Y=—¢U jL [z' <— % + v;;> _ W( 2% 4 u3>] iz — U ||, U (0, + 0,)dE

It has been remarked in §7 that u;, v5, w; are in all cases the gradient of a single-
valued function ; hence, making use of a result given by GOLDSTEIN,* we see that
the first integral vanishes identically, whence

Y= —U [L U(og +05) dS. . . . . . .. (10.42)

HE Vo, d.

It is only necessary to consider solutions such that v, is independent of w, since
in all other cases the integral with respect to « vanishes. The only solutions of
this form are those of type II for which ‘

Vg = (n + I)Bn ekx[G” - Gn-H]‘
It follows at once from (8.32) that
lim [] V2,5 = 0.

7>

Consider now the value of

Thus it appears that the lift is given by
Y=_—,U ” PogdS. oo (10.5)

Corresponding to the value C",_, of ¢, we have from (7.62), if n > 1,

(n—2)!

(Zn — 3) ' ann-l-lekan_ln-l

v4.= -

* ¢ Proc. Roy. Soc.,” A, vol. 123, p. 221 (1929).

VOL. CCXXXVI.—A K
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66 T. E. GARSTANG
This contributes to Y a term

(n=2) ! gupia [[ pog,_p
Uty 2 sze G,/ ds,
which vanishes since the integral with respect to o is zero.

Corresponding to the value a,' Cy' of ¢, we have from (7.73),

Vy = — 26101 kzekao,
which leads to

Y — 24, k2 U [ L U™ Gods.

It follows from (8.32) that
Y =4noUq!. . . . . . . ... ... (106)

Similarly, corresponding to the value 4,'Dy' of ¢, there is a lift in the direction

of the axis of z given by
Z = 4o Ub,t. (10.7)

The physical significance of the constants a,!, ,' is discussed in the next section.
It may be remarked here that there is an evident symmetry about the equations
(9.5), (10.8), and (10.7) ; also these equations show that the forces on the body
are associated with the three particular integrals corresponding to the values of p
which are spherical harmonics of degree — 2.

The discussion of the lift which has been given by BATEMAN* is incorrect. Starting
from values of the velocities which satisfy OseeN’s equations, BATEMAN obtains the
formula

L—,U H <z%’§—m%§> &S, ... (10.81)

where L denotes the lift in the direction of the y-axis and the integral is to be taken
over the surface of the solid. ¢ satisfies (7.13) and the pressure is given by (7.12).
Also u, v, w are given by (7.11), if we omit certain rotational velocities, included
in those discussed in §4, which are found not to affect the value of L. BaTEMAN
then says :

“If, when z is kept constant, ¢ is a single-valued function of x and y, as in the
case of the sphere, the lift L vanishes, but if it increases by T(¢) when a point in
the plane z = ¢ describes a closed curve in which this plane cuts the surface of
the body, then the formula for the lift is

L=oU jT(z)dz.

In particular, if ¢ contains a term of type
flz)tan™t (9/x), . . . . . .. .. (10.82)

* BATEMAN, DRYDEN, and MURNAGHAN, ¢ Bull. Nat. Res. Coun.,” No. 81, §7.6, p. 317 (1932).
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then this term contributes to the lift an amount

2mU j l2) dz.”

Now the values of ¢ which actually occur in the solution of OsEEN’s equations,
t.e., (3.1) and (3.2), are given by equations (7.21) to (7.25), and they are all
single-valued functions. Apart from this, however, it is easily shown that no such
value of ¢ as that given by (10.82) can possibly occur. For

VY (2) tant (3/) = 2L tant (o7,

from which we obtain
@f — o
dzz 7’

and ¢ = (A + Bz) tan™? (y/x).
The pressure is therefore given by ;
p=—oU (A + B2)y/(x* +7),

and this expression does not tend to zero in all directions at a great distance from
~the solid. The corresponding irrotational velocities are also unsuitable for the
same reason. We might try to get over the latter difficulty by adding a suitable
solution of (3.4). It can be shown that this is not possible, but it is unnecessary
to give the proof here, since the fact that the pressure does not satisfy the necessary
conditions is sufficient to render the value of ¢ given by (10.82) inadmissible. Thus
the formula (10.81) does not really give a lift at all.

11—THE CIRCULATION IN THE WAKE

It is well known that in practice the lifting force on a body is always associated
with a system of trailing vortices in the wake. We therefore proceed to investigate
the distribution of vorticity at a great distance from the body in the present theoretical
solution.

Consider the surface integral of the normal component of vorticity over the half
of the sphere X for which 2z is positive. If this hemisphere is denoted by X', the
integral is given by

”y(l’z Lo A S .. .. (11.11)

The vorticity involves only continuous solutions of equation (3.4), and therefore
£, n, ¢ are exponentially small except in the wake. It follows that the integral
(11.11) may be replaced by an integral over the half of the wake for which z is
positive. Now, making use of STOKES’s theorem, we see that the latter integral is

K 2
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68 T. E. GARSTANG

equal to the circulation I in a circuit C; enclosing the same half of the wake ; the
sense of description of this circuit being that of a right-handed rotation about the
outward-drawn normal to X.

It is convenient now to anticipate the results obtained below. We shall find
that for the solution giving the lift in the direction of the y-axis, the circulation in
the circuit C; tends to zero as r~%, but for all other solutions it tends to zero more
rapidly than »~*. 'We therefore proceed to evaluate the expression

lim 7 ” (I'e +m'n +n'%)ds = W,say. . . . .. (11.12)
s

r —>0

As a preliminary to this, we shall investigate the behaviour as r tends to infinity
of certain integrals taken over the hemisphere %’.  We start with the expression

U= b j f Ué=H s,
5
The integrand is of the form

¢+ f(x, 9, 2) sin™0, where f = 0 <}),
and it follows from (8.24) that

tim 7 {| 700 f(, 3, 2) sin"0d% = 0
.

provided f=0 <_1i> and m > 1.
Hence
lim U,” = 0, provided m > 1. ... (11.20)

Similarly it can be shown that if

V=1 ” m'e™ H," dZ,
s

then
limV,,"’:’O R € § 21 )

v =00

for all values of m. Equation (11.21) remains true if in the integrand we sub-
stitute n’ for m" or G,” (but not G,,) for H,".
Consider now the expression

Ut = | [ Ve H! 4.
Jdsy
Retaining only the term of greatest order in 7, we have

1 T% T i —kr (1—cos0) o dPn (COS 6)
U, ~~E.(Osmwa’w j’ne smzﬂ—mse—)de

_ 2 Y ehr—es) gin 20 dP, (cos 9) do.
0 d (cos 0)
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This may be replaced by an integral taken over the wake only, and in this region

we may replace 1 — cos 0 by 162, sin 6 by 0, and dp. 7 ((cose())) by its value when
6 =0.
Writing Ropbricug’s formula in the form

. (#) = ooy g Al 4 1 (2 — D%,

and using LeiBNniz’s theorem, we find that

[dP (1) _ a1
2 b

p =
whence

1 (n + 1) o o
Ul = - Jo 02 d0.
Denote now by J the expression

2 et 62 do
2 o .

If we put }kr = R?2, R0 = «, we have

R [

whence . .
hmJ_3<%> [Femvas d«:%(%’t) —J,say. . ... (1122
r —> 00 0
Thus 3
IimUtl=n(zr+1)]J ... ... ... (11.23)

Since J is finite, it follows from (11.23) that

lim [(n41) (0 +2) Up ! — (n— 1) a0, = 0, . . . (11.24)
and ' ) ) )
MU —U,d) (Ul —U,., )] _
hm[ S S 0. . . (11.25)

7 —> 0
We now turn to the expression

V, = r’*"”ym’e""(},, ds.

Retaining only the term of greatest order in 7, and making use of equation (4. 30)
we have

V,, = Z-z-n—:i—l)—k j’ﬂ Sin (5} d()) (ﬂ-e*kr(l_ c0s 6) Sin 0 (P,,_Hl - Pn~1l,\‘ do
Jo ’
2 —kr (1— €03 0) o310 2 I:dPn+1 (cos 6) _ dP,_, (cos 0):1 0
RISy P sin® 0| = cos 6 dcos o) %
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This integral may be evaluated by the method used for U,', and we find that

IimV,=2]. . . ... ...... (11.26)
It follows from (11.26) that o
Iim (V,.,—V,,) =0, .. ...... (11.27)

r—> 0
and

Hm [V, — 20+ 1)V, + -+ 1)V,,]=0. ... (1128

r—> 0

Similarly it can be shown that if

then
ImW,=2]. . .. ... ... .. (11.31)
It follows from (11-31) that
lim (WO - Wl) = 0. ......... (11.32)

Finally we consider the integral
L, = ([ reG,as.
v 3
It has been shown that* if
L, — H I'éG, ds,
JIE

then

Tt easily follows from the investigation referred to that a second approximation
to L, when r is large is given by
2x  2A,

Ln:/?'—i_ r ’

where A, is a numerical constant. Owing to the axial symmetry of the integrand,
we have, to the same order of approximation,

fa, =T A
Ln_gLn—kz—}—r. N € § X))
It follows from (11.33) that
limr(L,, —L,,)=0. ... .. ... (1L34)

* (GARSTANG, ‘ Proc. Roy. Soc.,” A, vol. 142, p. 502 (1933).
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Consider now the contribution to W of the special solution associated with the
lift in the direction of the y-axis. Corresponding to the value a,' C,' of ¢, we find,
from equations (7.71), (7.73), (7.75), (4.71), and (4.77), that

£ = — 2a B> H',m =0,
C = 2a01 ksek” (GO - Gl)‘

It follows from (11.22) and (11.23) that

tim 7 [[1g ds = — 2 (2rk) o
r—> 00 3’
Also from (11.32) we have

lim 7* U n'tds = 0.

7 —>00 3’

Thus, considering this solution alone, we have

limr# T =W = —2 (2zk)tal. . . . . . . . . (11.40)

r—>00
Since

E(x,_)’, — Z) =—£ (x,)); Z),

there is evidently a circulation of the same magnitude I, but in the opposite sense,
in a circuit G, enclosing the half of the wake for which z is negative.
Next we consider the contribution to W of the special solution corresponding

to the value
¢ =C,", wheren >1. . . . . . ... (11.41)

It follows from equations (7.61) to (7.63) that, omitting a numerical factor,
the vorticity depends on the term

v = ¢ Gn_ln—-l.

With the help of equation (4.78) we find that £ involves the functions ¢ H,”,
¢* H, s7% and ¢ H," % On referring to (11.20) we see that r* ” 't d3 certainly
”

tends to zero in all cases except where £ includes terms of the form H,'. These
occur only if » = 3, when we find

kx
£=— % (12H,' — 2 H,") + a term in ¢ H,?.

It follows from (11.24) that r* ” '€ dZ tends to zero in this case also.
”
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Again, we find that ¢ involves the functions ¢~ G,_;"™%, ¢# G,"*, and it follows
from (11-21) that r? ” n'C d2 vanishes in the limit, since by hypothesis # > 1. Thus
s

the special solution corresponding to the value of ¢ given by (11.41) contributes
nothing to W.
In the same way we can show that the special solution corresponding to the
value
¢ = D"

contributes nothing to W provided » > 1. The case n = 1 is the solution associated
with the lift in the direction of the z-axis. This solution will evidently give equal
and opposite circulations I’, say, tending to zero as 7%, in circuits enclosing the por-
tions of the wake for which y is respectively positive and negative. But the solution
contributes nothing to W, for corresponding to the value 4," Do of ¢, we find, from
equations (7.81), (7.83), (7.85), (4.71), and (4.74) that

£ =2b' kG,
n = 2b k3 &[Gy — G], ¢ = 0.

Now G;! and m’ each contain the factor cos », and since

r cos o do = 0,

0
it follows that r* H ['¢ d% and rt H m'n d% both vanish identically.
3 3
We now have to investigate the contribution to W of the various solutions of the

complementary function. Consider first the value of EL I'¢dZ. For type I solu-

tions we find, with the help of equations (4.81), (4.76), and (4.78) that £ involves
the functions ¢#H,,", r = — 1,0, 1, 2. On referring to (11.20) we see that the
integrals of these terms vanish if m > 1.

If m = 1, we have

£ = 2°Cnn ft’"‘l [(n 4 2) (n +1)H, ! — (n— 1)nH, "]
- %[(n + 3) (n —+ 2) H! —=n (n + 1) H”+21],

and it follows from (11.24) that r* H l'¢ d% vanishes in the limit. If m = 0, we
-
have § = 0.
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Now consider the type II solutions. In this case we find that £ involves the
functions ¢#H, "', r= — 1,0, 1, 2, and making use of (11.20), we see that 7* ” 't d=
s
tends to zero if m > 0. Ifm = 0, we have

kx x
f= = O -+ PR e

and it follows from (11.25) that * H l'¢ dZ vanishes in the limit.
s

Turning now to the type III solutions, we find that £ involves the functions
&G,,," r= —1,0,1,2. Since G,” contains the factor cos mw and

™
j cos mo do = 0,
0

it follows that r? ” 't d% vanishes identically unless m = 0. In this case we have

3

” kx
g =t A TG G ~ DDV G g, g,

and it follows from (11.34) that r* ” '€ d% vanishes in the limit.
s
Finally, for the type IV solutions, we find that £ involves the functions ¢#G,,,m+!
r= —1,0,1, 2, and here r* ”

b

I'’{ d% vanishes identically for all values of m.
s

Consider next the contribution of the type I solutions to r* ” m'n d%. We find
v Jd3
that n involves the functions ¢*H,", but not the functions ¢*G,”, and it follows

from (11.21) that r* H m'y d% tends to zero for all values of m. For the same reason
s
the contribution of the type II solutions to r’fH m'v d% and the contributions of the
s
type III and type IV solutions to r* H n'C d% also vanish in the limit.
s

We have now to consider the contribution of the type III solutions to 7} ” m'ndx.
3

7 involves the functions ¢G,”, and it follows from (11.21) that it is only necessary
to examine the solutions which lead to terms in v of the form ¢*G,. These are
the solutions obtained by putting m = 1 in equations (4.83), and in this case we
find

nlnt 1) (o 2) ke
T @ Ot Gl
prnt ) (et Dtk oo o

220 + 3)
-+ terms of the type G2

It follows from (11.27) that 7'*” m'n dX vanishes in the limit.
v 3

VOL. CCXXXVI.—A L
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In the same way we can show that the contribution of the type I solutions to
r H 7' dZ also vanishes. ‘
s

Consider next the contribution of the type IV solutions to r*ﬂ mmdZ. Here
s

again 7 involves the functions ¢#G,”, and it is only necessary to examine the solu-
tions which lead to terms in % of the form ¢*G,. These are the solutions obtalned
by putting m = 0 in equations (4.84), and in this case we find

(o Dy (1) (1 2) 3k
—W[ G,1+ Gl + 2 (ZZ—I—B) [— G, + G2l

kx
+ DS G, L — (204 1) Gut (14 1) G

— LD [0+ 1) G, — (204 8) G + (24 2) Gua]

+ terms of the type ¢*G,?2.

It follows from (11.27) and (11.28) that r* ” m'n dZ vanishes in the limit.
<
In the same way we can show that the contribution of the type II solutions to
rt H n'C dX also vanishes.
-

This completes the discussion of the complementary function, which contributes
nothing to W.

We now see that, as stated above, the only solution which contributes to W is
the one associated with the lift in the direction of the y-axis. It follows that equation
(11.40) holds good for any motion of the fluid. Combining this result with (10.6),
we have

Y = — 2zt lim pUIR ™,

r—>0

where
R = U/,
i.e., R is a Reynolds number for the sphere .
Similarly
Z = — 2zt lim pUI'R™.

The above discussion shows that trailing vortices are actually given by the present
theoretical treatment in the region at a great distance from the body for which
itis valid. Although in this region the vorticity has become widely diffused, enough
of its characteristics persist to give opposite circulations round two complementary
halves of the wake, which die out as r~* as we go away from the body. Further,
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the lift is definitely connected with these circulations, and it is easily seen that
the relation between the signs of the lift and the circulations is that required by
observation.

In conclusion, I wish to express my thanks to Professor L. N. G. FiLon, F.R.S,,
both for the original suggestion of the subject of this paper, and for a great deal of
helpful advice. My thanks are also due to Mr. T. Lewris, for a useful suggestion,
and to Mr. A. G. Hurw, who has verified a large number of the formulae given
in §§4 and 6.
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